

# **APEX PCI Development Kit**

## **Getting Started**

User Guide November 2001



101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com

A-UG-A20KEPCI-2.0

Copyright © 2001 Altera Corporation. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera

Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. All rights reserved.





## About this User Guide

This user guide provides comprehensive information about the Altera<sup>®</sup> APEX<sup>TM</sup> peripheral component interconnect (PCI) Development Kit.

Table 1 shows the user guide revision history.

- Go to the following sources for more information:
- See "Features" on page 10 for a complete list of the kit features, including new features in this release.
- Refer to the APEX PCI Development Kit readme file on the APEX PCI Development Kit for late-breaking information that is not available in this user guide.

| Table 1. User Gui      | de Revision History                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Date                   | Description                                                                                                        |
| October 2001,<br>v2.0  | Updated the organization of the document. Added information on the prototyping flow and a prototyping walkthrough. |
| December 2000,<br>v1.0 | First version of user guide.                                                                                       |

## How to Find Information

- The Adobe Acrobat Find feature allows you to search the contents of a PDF file. Click the binoculars toolbar icon to open the Find dialog box.
- Bookmarks serve as an additional table of contents.
- Thumbnail icons, which provide miniature previews of each page, provide a link to the pages.
- Numerous links, shown in green text, allow you to jump to related information.

## How to Contact Altera

For the most up-to-date information about Altera products, go to the Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to

http://www.altera.com/mysupport. For additional information about Altera products, consult the sources shown in Table 2.

| Table 2. How to Co            | ontact Altera       |                                 |                                 |
|-------------------------------|---------------------|---------------------------------|---------------------------------|
| Information Type              | Access              | USA & Canada                    | All Other Locations             |
| Altera Literature<br>Services | Electronic mail     | lit_req@altera.com (1)          | lit_req@altera.com (1)          |
| Non-technical                 | Telephone hotline   | (800) SOS-EPLD                  | (408) 544-7000                  |
| customer service              |                     |                                 | (7:30 a.m. to 5:30 p.m.         |
|                               |                     |                                 | Pacific Time)                   |
|                               | Fax                 | (408) 544-7606                  | (408) 544-7606                  |
| Technical support             | Telephone hotline   | (800) 800-EPLD                  | (408) 544-7000 (1)              |
|                               |                     | (7:30 a.m. to 5:30 p.m.         | (7:30 a.m. to 5:30 p.m.         |
|                               |                     | Pacific Time)                   | Pacific Time)                   |
|                               | Fax                 | (408) 544-6401                  | (408) 544-6401 (1)              |
|                               | World-wide web site | http://www.altera.com/mysupport | http://www.altera.com/mysupport |
|                               | FTP site            | ftp.altera.com                  | ftp.altera.com                  |
| General product               | Telephone           | (408) 544-7104                  | (408) 544-7104 (1)              |
| information                   | World-wide web site | http://www.altera.com           | http://www.altera.com           |

#### Note:

(1) You can also contact your local Altera sales office or sales representative.

## Typographic Conventions

The *APEX PCI Development Kit Getting Started User Guide* uses the typographic conventions shown in Table 3.

| Table 3. Conventions                        |                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visual Cue                                  | Meaning                                                                                                                                                                                                                                                                                                                                       |
| Bold Type with Initial<br>Capital Letters   | Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: <b>Save As</b> dialog box.                                                                                                                                                                                    |
| bold type                                   | External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type.<br>Examples: f <sub>MAX</sub> , \QuartusII directory, d: drive, chiptrip.gdf file.                                                                                           |
| Bold italic type                            | Book titles are shown in bold italic type with initial capital letters. Example: <b>1999 Device Data Book</b> .                                                                                                                                                                                                                               |
| Italic Type with Initial<br>Capital Letters | Document titles are shown in italic type with initial capital letters. Example: <i>AN</i> 75 ( <i>High-Speed Board Design</i> ).                                                                                                                                                                                                              |
| Italic type                                 | Internal timing parameters and variables are shown in italic type. Examples: $t_{PIA}$ , $n + 1$ . Variable names are enclosed in angle brackets (<>) and shown in italic type. Example: < <i>file name</i> >, <i><project i="" name<="">&gt;.<b>pof</b> file.</project></i>                                                                  |
| Initial Capital Letters                     | Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.                                                                                                                                                                                                                                  |
| "Subheading Title"                          | References to sections within a document and titles of Quartus II Help topics are shown in quotation marks. Example: "Configuring a FLEX 10K or FLEX 8000 Device with the BitBlaster <sup>™</sup> Download Cable."                                                                                                                            |
| Courier type                                | Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.                                                                                                                                                                                             |
|                                             | Anything that must be typed exactly as it appears is shown in Courier type. For<br>example: c:\quartusII\qdesigns\tutorial\chiptrip.gdf. Also, sections<br>of an actual file, such as a Report File, references to parts of files (e.g., the AHDL<br>keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in<br>Courier. |
| 1., 2., 3., and a., b., c.,                 | Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.                                                                                                                                                                                                              |
|                                             | Bullets are used in a list of items when the sequence of the items is not important.                                                                                                                                                                                                                                                          |
| $\checkmark$                                | The checkmark indicates a procedure that consists of one step only.                                                                                                                                                                                                                                                                           |
| IP                                          | The hand points to information that requires special attention.                                                                                                                                                                                                                                                                               |
| 4                                           | The angled arrow indicates you should press the Enter key.                                                                                                                                                                                                                                                                                    |
| •••                                         | The feet direct you to more information on a particular topic.                                                                                                                                                                                                                                                                                |





## Contents

| About this User Guide                                                     | iii |
|---------------------------------------------------------------------------|-----|
| How to Find Information                                                   | iii |
| How to Contact Altera                                                     | iv  |
| Typographic Conventions                                                   | v   |
| About this Kit                                                            | 9   |
| General Description                                                       | 9   |
| Features                                                                  | 10  |
| Documentation                                                             | 10  |
| Getting Started                                                           | 11  |
| Before You Begin                                                          | 11  |
| Development Kit Contents                                                  | 11  |
| Inspect the Board                                                         | 11  |
| Hardware Requirements                                                     | 12  |
| Software Requirements                                                     | 12  |
| Software Installation                                                     | 12  |
| Board Installation                                                        | 13  |
| Kit Application Walkthrough                                               | 15  |
| Example 1. PCI Target Write (Demo)                                        | 16  |
| Example 2. PCI Master Write (Demo)                                        | 17  |
| Example 3. PCI Master Loop (Debug)                                        | 18  |
| Example 4. Latency Timer Configuration Register & PCI Master Loop (Debug) | 20  |
| Example 5. Address Offset & Target Loop (Debug)                           | 21  |
| Configuring the APEX Device                                               | 23  |
| Serial Configuration Using Flash Memory                                   | 23  |
| Selecting the Flash Section to Configure the APEX Device                  | 24  |
| Flash Programming Walkthrough                                             | 25  |
| JTAG Configuration                                                        | 27  |
| Prototyping Overview                                                      | 28  |
| Install PCI Compiler                                                      | 29  |
| Simulate Your Application Design                                          | 29  |
| Synthesize Your Application Design                                        | 29  |
| Compile in the Quartus II Software & Generate Programming Files           | 30  |
| Write the .rbf of Your Design into Flash                                  | 30  |
| Hardware Test Your Application Design                                     | 31  |

| Prototyping Walkthrough                                 | 31 |
|---------------------------------------------------------|----|
| Before You Begin                                        | 31 |
| Synthesize the Reference Design                         | 33 |
| Compile the Reference Design in the Quartus II Software | 34 |
| Write the .rbf into the Flash Memory                    | 35 |
| Hardware Test the Reference Design                      | 35 |



## About this Kit

## General Description

The APEX PCI Development Kit provides a complete hardware platform so that designers can quickly begin hardware testing and verification. Figure 1 shows the APEX PCI Development Kit contents.

Figure 1. APEX PCI Development Kit



The development kit includes:

APEX PCI Development Board—You can use the 3.3-V PCI development board in a 32- or 64-bit PCI slot. It supports 33- and 66-MHz PCI interfaces as well as PCI-X interfaces. You can use the board as a desktop application with an external power supply. You can also add a PCI mezzanine card (PMC), i.e., daughter card, to the board. Refer to the APEX PCI Development Board Data Sheet for more information on the board.

|               | Reference Design—The kit includes a pci_mt64 reference design that contains a DMA engine, a FIFO interface, and an SDRAM controller. The design is useful for a variety of hardware applications and lets you begin prototyping and verification quickly. For more information on the reference design, refer to FS 10: pci_mt64 MegaCore Function Reference Design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | • <i>APEX PCI Development Kit Application</i> —The APEX PCI Development Kit Application (hereafter called kit application) provides an interactive platform with which you can perform PCI transactions. You can also use the kit application as a starting point for developing your own custom software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Features      | <ul> <li>Can be used to prototype a wide variety of custom designs, coupled with Altera PCI MegaCore functions</li> <li>Allows designers to focus engineering efforts on value-added custom development, reducing time to market</li> <li>Provides a prototyping platform for both PCI form factor and standalone designs</li> <li>Supports 32- and 64-bit 33- and 66-MHz PCI designs</li> <li>Includes a 64-bit 66-MHz hardware verified, open source PCI reference design</li> <li>Includes an open source Windows application that can be used as a starting point for custom software applications</li> <li>3.3-V PCI and PCI-X expansion card         <ul> <li>PCI-BOARD/A4E development board includes an EP20K400EFC672 device that supports 33- and 66-MHz PCI interfaces</li> <li>PCI-BOARD/A10E development board includes an EP20K1000EFC672 device that supports 33-MHz PCI interfaces</li> </ul> </li> </ul> |
| Documentation | The APEX PCI Development Kit contains the following documentation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | <ul> <li>APEX PCI Development Board Data Sheet—Describes the specifications of the board and how to load design data into the APEX device on the board.</li> <li>PCI MegaCore Function User Guide—Provides the specifications of Altera PCI MegaCore functions and explains how to use them.</li> <li>FS 10: pci_mt64 MegaCore Function Reference Design—Describes the reference design that is included with the kit.</li> <li>Configuring PLDs with Flash Memory White Paper—Describes how to configure APEX devices with flash memory and a MAX 3000A device.</li> <li>APEX PCI Development Kit Configuration Controller Circuit White Paper—Describes the flash controller program that is configured into the APEX device when the board powers up.</li> </ul>                                                                                                                                                       |



## Before You Begin

Before using the kit or installing the software, check the contents of the kit and inspect the board to verify that you received all of the items. If any of the items are missing, contact Altera before you proceed. You should also verify that your PC meets the kit hardware and software requirements.

#### **Development Kit Contents**

Table 1 shows the items shipped in the kit.

| Table 1. APEX PCI Development Kit Contents                           |               |                  |
|----------------------------------------------------------------------|---------------|------------------|
| Contents                                                             | Development K | it Ordering Code |
|                                                                      | PCI-BOARD/A4E | PCI-BOARD/A10E   |
| APEX PCI development board with an EP20K400E device                  | $\checkmark$  |                  |
| APEX PCI development board with an EP20K1000E device                 |               | $\checkmark$     |
| PCI Development Kit CD-ROM                                           | $\checkmark$  | $\checkmark$     |
| ByteBlasterMV download cable                                         | $\checkmark$  | $\checkmark$     |
| Selector guides for Altera devices, tools, and IP MegaCore functions | $\checkmark$  | $\checkmark$     |
| Jungo WinDriver device driver CD-ROM (1)                             | $\checkmark$  | $\checkmark$     |

Note:

ſ

(1) The kit includes a CD-ROM containing a free 30-day evaluation of Jungo's WinDriver device driver. Altera developed the kit application using WinDriver. For more information on the driver, refer to the documentation on the WinDriver CD-ROM.

#### **Inspect the Board**

Place the board on an anti-static surface and inspect it to ensure that it has not been damaged during shipment. Verify that all components are on the board and appear intact.



17

Refer to the *APEX PCI Development Board Data Sheet*—which is available on the *PCI Development Kit CD-ROM*—for information on the board components and their location.

The board can be damaged without proper anti-static handling. Therefore, you should take anti-static precautions before handling the board.

#### **Hardware Requirements**

The APEX PCI development board is a 3.3-V PCI card that should only be used in 3.3-V PCI systems. To use the board in 5.0-V PCI systems, you must use a 5.0-V to 3.3-V PCI extender card to convert the 5.0-V PCI system to a

3.3-V PCI system. Additionally you must have a PC that can accommodate a long PCI form-factor card.



Refer to the APEX PCI Development Kit readme file for a partial listing of extender card suppliers.

#### Software Requirements

To use the kit application, you must have the Windows 2000, Windows NT version 4.0 Service Pack 5, or Windows 98 operating system on your PC. The kit application provided with the kit has been tested on these systems only.

- IP
  - You must have administrative privileges to install the kit application device driver on Windows 2000 or Windows NT systems.

To create designs for the board, you must have the following software installed on your PC:

- A full version of the Quartus II software version 1.1 service pack 2 or higher (i.e., you cannot use the free web version)
- PCI Compiler version 2.1.0 or higher (you must have purchased a license for the software)

To install the software on the *PCI Development Kit CD-ROM*, perform the following steps.

- Insert the PCI Development Kit CD-ROM into your 1. CD-ROM drive. The installation program begins running.
  - [F If the installation program does not run automatically when you insert the CD-ROM into your CD-ROM drive, perform the following steps to run it manually.
    - Choose Run (Windows Start menu). a.
    - b. Type <*CD*-*ROM drive*>:\pcikit.exe in the **Open** box.
    - Click **OK**. The installation program opens. c.

## Software Installation

- 2. Click Install APEX PCI Development Kit to begin installation.
- 3. Follow the on-line instructions to install the APEX PCI Development Kit files, documentation, device driver, and kit application. The default installation directory is c:\megacore\apex\_pci\_kit-v2.0.0. Additionally, the installation program creates icons in Programs > Altera > APEX PCI Development Kit (Windows Start menu), which you can use to launch the kit application.
- 4. When installation finishes, remove the CD-ROM from your CD-ROM drive.

### Board Installation

- To install the board in your PC, perform the following steps.
- 1. Shut down and turn off your PC.
- 2. Open your PC's case.
- 3. Locate an empty PCI slot.
  - The slot must be able to accommodate a long PCI form factor.
- 4. Insert the APEX PCI development board into the PCI slot with the RS-232 connector facing the back of the computer. Make sure the board is firmly seated. Secure the board by installing the screw on the bracket on the back of the board.
- 5. Turn on your PC and observe the board. LEDs 1 through 7 (LED 1 is closest to the back of the PC) show a counting pattern where LED 1 is the least significant bit and LED 7 is the most significant bit. The flashing LEDs indicate that the APEX device has been configured.
- 6. Close your PC's case.
- 7. If your PC has the Windows 2000 or Windows 98 operating system, you must install a device driver. After Windows 2000 or Windows 98 finishes loading, the operating system detects the APEX PCI development board as new hardware and prompts you to install a driver.

The APEX PCI Development Kit installation program automatically copies the driver files **windrvr.sys** and **wdpnp.sys** to the \**system32\drivers** directory in your Windows installation directory. Your operating system should detect the driver for the new hardware automatically.

Follow the on-screen instructions to install the driver.

The APEX PCI Development Kit installation program creates the directory structure shown in Figure 1, where *<path>* is the directory in which the APEX PCI Development Kit is installed.

| Figure 1. APEX PCI Development Kit Directory Structure                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre> <path>\apex_pci_kit-v2.0.0</path></pre>                                                                                                                       |
| bin<br>Contains the executable file for the APEX PCI Development Kit Application.                                                                                   |
| doc<br>Contains the kit documentation.                                                                                                                              |
| <b>const_files</b><br>Contains constraint files for the pci_mt32 and pci_mt64 MegaCore functions that are used with the board.                                      |
| Software<br>Contains the source files for the APEX PCI development kit application.                                                                                 |
| driver<br>Contains the device driver library.                                                                                                                       |
| gui<br>Contains the APEX PCI development kit applicaton source files.                                                                                               |
| Contains the the Quartus II project and reference design source files.                                                                                              |
| Contains the reference design VHDL source files for the EPM3256A device.                                                                                            |
| quartus_20K400E           Contains the Quartus II design files for the EP20K400E device only.                                                                       |
| quartus_20K1000E           Contains the Quartus II design files for the EP20K1000E device only.                                                                     |
| synthesis<br>Contains the reference design source files. This kit uses the LeonardoSpectrum software for synthesis.                                                 |
| backend<br>Contains the VHDL source files for the backend module, which is an interface between the pci_mt64<br>function and the SDRAM controller interface module. |
| flash_cntrl<br>Contains the VHDL source files for the flash memory controller module.                                                                               |
| sdr_inf<br>Contains the VHDL source files for the SDRAM controller interface module.                                                                                |
| sdr_cntrl<br>Contains the VHDL source files for the SDRAM controller module.                                                                                        |

## Kit Application Walkthrough

This section explains how to use the kit application to perform PCI transactions, including:

- Example 1. PCI Target Write (Demo)
- Example 2. PCI Master Write (Demo)
- Example 3. PCI Master Loop (Debug)
- Example 4. Latency Timer Configuration Register & PCI Master Loop (Debug)
- Example 5. Address Offset & Target Loop (Debug)

To run the kit application, choose **Programs > Altera > APEX PCI Development Kit** (Windows Start menu). The kit application opens to the **Demo** tab with a PCI target write transaction selected for one iteration of 2,048 bytes of random data.

Refer to the on-line help in the kit application for more information on kit application options and menus.

Figure 2 describes the flow when executing PCI transactions.



#### Figure 2. Example PCI Transaction Flow Using the Kit Application

#### Example 1. PCI Target Write (Demo)

In this example, the data source is the system and the destination is the PCI card. You can verify this setup in the **Command Information** section of the kit application.

- 1. Run the kit application. The application opens to the **Demo** tab. Leave the kit application running for the remaining examples.
- 2. Choose the **Target Write** command.
- 3. Keep the default Address/Size values, i.e.,
  - Transfer Length: 2,048
  - Iterations: 1
  - Data Type: Inc Packet
- 4. Click **Execute** to begin operation.
- 5. Review the results in the Display Window.
- 6. Choose Incrementing from the **Data Type** drop-down list box.
- 7. Click Execute.
- 8. Review the speed of transaction in the performance meter window.
- 9. Review the results in the **Display Window**. Figure 3 shows the results.

#### Figure 3. PCI Target Write (Demo)

| The Edit Help         Demo       Debug       Flash         Commands       OMA_Operation       PC         Mode       Chaining Mode       Data         Command:       Chaining Mode       Command: Write       Data         Command:       Command: Write       Data       Source: System         Designation:       PCI       Data       Source: System         Address / Size       Transfer Length       Iterations       Data Type         2048       T       Inc Packet       Desination: PCI Card         Display Window       Vaddress       Vaddress       Vaddress         Result of Target Write operation       Vaddress       Vaddress       Vaddress         1290 clock cycles       Vaddress       Vascli code       ASCII code         Non00000       0000002       ASCII Data       ASCII code       Speed (MB/S)         0x0000000       00000002       Execute       Execute       Speed (MB/S)                                                                                                                                                                                                                                                                                                                                                                                                             | Altera APEX PCI Development Kit Application                                                                                                                                                                                                                                |                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Demo       Debug       Flash         Commands       Mode       DMA_Operation       PCI         Carlow Mode       Command Information       Data         Carlow Mode       Command Write       Data         Carlow Target Read       Carlow Mite       Data         Address / Size       Command Information       Data         Transfer Length       Iterations       Data Type         Inc Packet       Command Write       Destination: PCI Card         Display Window       Command: Vite       Destination: PCI Card         Monday,       October 22, 2001 at 16:23:41       Improvement         Target Performance Register:       290 clock cycles       Velock cycles         112       MBytes / Second       ASCII Data       Facult         Address       Hex Data       ASCII Data       Execute         0x000000       00000001       Execute       Speed (MB/s)         0x000001       00000002       Execute       Speed (MB/s)                                                                                                                                                                                                                                                                                                                                                                              | e Edit Help                                                                                                                                                                                                                                                                |                                                                       |
| Commands       DMA_Operation       Command Information         Mode       Image: Read       Master Write       Image: Read       Data         Source: System       Destination       Destination       PC         Target Read       Target Write       Image: Read       Image: Read       Data         Address / Size       Transfer Length       Iterations       Data Type         2048       Image: Read       Image: Read       Image: Read       Image: Read         Display Window       Image: Register:       Image: Register:       Image: Register:       Image: Register:         290       clock cycles       Image: Register:       Image: Register:       Image: Register:       Image: Register:         290       clock cycles       Address       ASCII Data       Image: Register:       Image: Register:         112       MBytes / Second       Address       ASCII Data       Image: Register:       Image: Register: | Demo Debug Flash                                                                                                                                                                                                                                                           |                                                                       |
| Address / Size       Transfer Length       Iterations       Data Type         2048       1       Inc Packet         Display Window       Image: Comparison       Image: Comparison         Result of Target Write operation       Image: Comparison       Image: Comparison         Monday, October 22, 2001 at 16:23:41       Image: Comparison       Image: Comparison         Target Performance Register:       290 clock cycles       Image: Comparison         112 MBytes / Second       Address       Image: Comparison         Address       Hex Data       ASCII Data         0x0000000       00000001       Image: Comparison       Image: Comparison         0x0000001       00000001       Image: Comparison       Image: Comparison       Image: Comparison         0x0000001       00000001       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison         0x0000001       00000005       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison                               | Commands<br>Mode<br>C Master Read C Master Write<br>C Target Read C Target Write<br>C Mon Chaining Mode                                                                                                                                                                    | Command Information<br>PCI<br>Command: Write<br>Destination: PCI Card |
| Display Window           Result of Target Write operation<br>Monday, October 22, 2001 at 16:23:41           Target Performance Register:<br>290 clock cycles<br>112 MBytes / Second           Address           Hex Data           AscII Data           0x0000000           0x0000000           0x0000000           0x0000000           0x0000000           0x0000008           0x0000008           0x0000008           0x0000008           0x0000008           0x0000000           0x0000000           0x0000000           0x00000000           0x00000000           0x00000000           0x00000000           0x00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Address / Size<br>Transfer Length Iterations Data Type<br>2048 1 Inc Packet                                                                                                                                                                                                |                                                                       |
| Ox0000000         00000002         00000001         Speed (MB/S)           0x0000018         00000005             0x0000020         00000005             0x0000018         00000007             0x0000020         00000007             0x0000020         00000007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Display Window<br>Result of Target Write operation<br>Monday, October 22, 2001 at 16:23:41<br>Target Performance Register:<br>290 clock cycles<br>112 MBytes / Second<br>Address Hex Data ASCII Data                                                                       |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0x0000000         00000002         00000001           0x0000008         00000004         00000003           0x0000010         00000005         00000005           0x0000020         00000007         00000007           0x0000020         0000000000000000         Execute | Speed (MB/S)                                                          |

#### Example 2. PCI Master Write (Demo)

In this example, the data source is the PCI card and the destination is the system memory. You can verify this setup in the Command Information section of the kit application.

- 1. Select Master Write under Mode.
- 2. Select DMA Non-Chaining under DMA Operation.
- 3. Make the following Address/Size settings:
  - **Transfer Length:** 4,096
  - Iterations: 2
- 4. Click Execute.
- 5. Review the speed of transaction in the performance meter.

6. Review the results in the **Display Window**. Figure 4 shows the results.

#### Figure 4. PCI Master Write (Demo)

| Altera APEX PCI Development Kit Application e Edit Help Demo Debug Flash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Commands<br>Mode<br>C Master Read C Master Write<br>C Target Read C Target Write<br>C Target Read C Target Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Command Information<br>PCI<br>Command: Write<br>Destination: System |
| Address / Size     Transfer Length     Iterations     Data Type       4096     2     Random Packet     ▼       Display Window     ▼     Result of Master Write operation<br>Monday, October 22, 2001 at 16:26:22     ▼     Address       Master Performance Register:<br>385 clock cycles     ™     Address     ✓     Address       Address     Hex Data     ASCII Data     ✓     ASCII code       Address     Hex Data     ASCII Data     ✓     ASCII code       Address     Hex Data     ASCII Data     ✓     ASCII code       0x0000000     21383bee 5b103efe     18:      ✓       0x00000010     39bb62b5     7e582510     9.b. ~X%.      Execute       0x0000010     39bb62b5     7e582510     9.b. ~X%.         0x0000010     35b640c     6de019e9     f | 84.6<br>Speed (MB/S)                                                |
| ΠτηΠΠΠΠΩ8 ΠՒ2942e3 7c0303f4 ΝΗ Ι ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |

#### Example 3. PCI Master Loop (Debug)

In this example, a PCI master read transaction is performed followed by a PCI master write. The kit application verifies that the data written and read by the master is the same.

- 1. Click the **Debug** tab.
- 2. Select Master Loop under Mode.
- 3. Select DMA Non-Chaining under DMA Operation.
- 4. Use the **Address Offset**, **Transfer Length**, and **Iterations** values that were specified in example 2.

- 5. Select AA55 Packet from the Data Type drop-down list box.
- 6. Click Execute.
- 7. Review the speed of transaction in the **Display Window**.
- 8. Review the results in the **Display Window**. Figure 5 shows the results.

Figure 5. PCI Master Loop (Debug)

| Commands<br>Mode<br>C Master Read C Master Write C Master Loop<br>C Target Read C Target Write C Target Loop                                                                                                                                                                                                               | Command Information<br>PCI<br>Command: Read/Write<br>Destination: PCI Card                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address / Size Address / Size Address Offset Transfer Length Iterations Data Type 0 4096 2 AA55 Packet  Display Window Result of Master Read operation Master Performance Register: 601 clock cycles 614 MBytes / Second Result of Master Write operation Master Performance Register: 472 clock cycles 68 MBytes / Second | Configuration Registers           Vend ID         0x1172           Dev ID         0x0004           Command         0x0117           Status         0x0420           Rev ID         0x01           Prog If         0x00           Sub Class         0x00           DMA Registers         0x1205168           Dma_acr         0x1a205168           Dma_bcr         0x0000000           Dma_mar         0x0000000 |
| Address Sent Data Received Data                                                                                                                                                                                                                                                                                            | Offset Connguration Bytes BAR0 (DMA) Value Read Write                                                                                                                                                                                                                                                                                                                                                          |

## Example 4. Latency Timer Configuration Register & PCI Master Loop (Debug)

The operation in example 4 is the same as in example 3. By changing the **Latency Timer** setting, the PCI master device remains a master of the bus for more clock cycles, improving the throughput as the master device bursts more data.

- 1. Use the **Command** and **Address/Size** settings you specified in example 3.
- 2. Select Lat Timer in the Configuration Registers box.

Make note of the default value with which the system programmed the latency timer so that you can return the setting to its default value after running this example.

- 3. Change the Lat Timer value to 0xf8.
- 4. Click Write under Update Registers.
- 5. Click Execute.
- 6. Review the results in the Display Window.
- 7. Compare the results to those of example 3, which used the default **Lat Timer** setting 0x40. See Figure 6.
- 8. Change the latency timer register back to the default value.

Figure 6. Latency Timer & PCI Master Loop (Debug)

| nemo Debug Flash                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commands<br>Mode<br>C Master Read C Master Write © Master Loop<br>C Target Read C Target Write C Target Loop<br>© Non Chaining Mode                                                                                                                                                                      | Command Information<br>PCI<br>Command: Read/Write<br>Destination: PCI Card                                                                                                                                                          |
| Address / Size<br>Address Offset Transfer Length Iterations Data Type<br>0 4096 2 AA55 Packet<br>Display Window<br>Master Performance Register:<br>586 clock cycles<br>55 MBytes / Second<br>Result of Master Write operation<br>Master Performance Register:<br>204 clock cycles<br>159 MBytes / Second | Configuration Registers<br>Sub Class 0x00<br>Base Class 0xff<br>Cache Line 0x08<br>Lat Timer 0xf8<br>Hdr Type 0x00<br>BIST 0x00<br>BAR0 0xfaf00000<br>DMA Registers<br>Dma_csr 0x1a205168<br>Dma_bcr 0x0000000<br>Dma_mar 0x0000000 |
| Address Sent Data Received Data<br>0x0000000 aa55aa55 .U.U aa55aa55 .U.U<br>0x0000004 55aa55aa II II S5aa55aa II II<br>Execute                                                                                                                                                                           | Register Update           Offset         0x0d         © Configuration           Bytes         0x01         © BAR0 (DMA)           Value         0xf8         Read         Write                                                     |

#### Example 5. Address Offset & Target Loop (Debug)

In this example, a target loop transaction target write is performed, followed by a target read. The address offset changes the starting address of the transaction.

- 1. Enter 40 in the **Address Offset** box.
- 2. Select Target Loop under Mode.
- 3. Click Execute.
- 4. Review the starting address of the data transaction in the **Display Window**. Figure 7 shows the results.

#### Figure 7. Address Offset & PCI Target Loop (Debug)

| Berger Altera APEX PCI Development Kit Application     File Edit Help     Demo Debug Flash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commands<br>Mode<br>C Master Read C Master Write C Master Loop<br>C Target Read C Target Write C Target Loop<br>Non Chaining Mode<br>Non Chaining Mode                                                                                                                                                                                                                                                                                                                                                                                                                           | Command Information<br>PCI<br>Command: Write/Read<br>Data<br>Source: PCI Card<br>Destination: System                                                                                                                                                                            |
| Address / Size     Address Offset     Transfer Length     Iterations     Data Type       40     4096     2     Inc Packet     Inc Packet       Display Window     Image therefore the second     Image therefore the second     Image therefore the second       Target Performance Register:     16665 clock cycles     Image therefore the second     Image therefore the second                                                                                                                                                                                               | Vend ID       0x1172         Dev ID       0x0004         Command       0x0117         Status       0x0420         Rev ID       0x01         Prog If       0x00         Sub Class       0x00         DMA Registers         Dma_csr       0x0039         Dma_acr       0x1a205168 |
| Address         Sent         Data         Received         Data           0x0000028         00000001         00000001         00000001           0x0000022         00000002         00000002         00000002           0x0000030         00000003         00000004         00000004           0x0000038         00000004         00000004         00000004           0x0000038         00000005         00000005         00000005           0x0000038         00000006         00000006         00000006           0x0000038         00000006         00000006         00000006 | Dma_bcr         0x0000000           Dma_isr         0x00           Dma_mar         0x00           Dma_mar         0x0000000           Register Update         Offset           Offset         0x00           Bytes         0x01           Value         0xf8                    |

# Configuring the APEX Device

The APEX PCI development board supports two configuration methods.

- Serial configuration from an on-board flash memory device
- JTAG configuration through a ByteBlasterMV download cable

#### Serial Configuration Using Flash Memory

The APEX PCI development board contains an Altera MAX<sup>®</sup> EPM3256A device and an on-board flash memory device. These devices implement a configuration control circuit that allows users to save several configuration files on-board. You can use the flash interface in the kit application to write a Raw Binary File (**.rbf**) to the on-board flash memory device.



For more information on the flash reference design, refer to the *APEX PCI Development Kit Configuration Controller Circuit White Paper*. For more information on the program that is loaded in the EPM3256A device, refer to the *Configuring PLDs with Flash Memory White Paper*. The documents are available on the *PCI Development Kit CD-ROM*.

The kit application can access several equal-sized sections of the flash memory, which can be used to store APEX device configuration files. The number and size of flash memory sections that are available is dependent on the APEX device that is on the board. The kit application detects the APEX device via the PCI subsystem vendor ID configuration register. This subsystem ID register is a read-only register defined via a parameter in the Altera PCI MegaCore function. Table 2 shows the subsystem ID register's values, the defined device, and the resulting flash memory access.

| Table 2. Subsystem ID Registers |                                   |                                    |                                          |
|---------------------------------|-----------------------------------|------------------------------------|------------------------------------------|
| Device                          | Subsystem ID Default<br>Value (1) | Number of Flash Memory<br>Sections | Size of Flash Memory<br>Section (KBytes) |
| EP20K400E                       | 0xA400                            | 7                                  | 512                                      |
| EP20K1000E                      | 0xAA00                            | 2                                  | 1,152                                    |

#### Note:

(1) The two least significant Hex digits can have values from 00 to FF.

The flash memory includes a default configuration file for the APEX PCI Development Kit reference design. To avoid overwriting the default configuration file, the kit application does not permit you to access the default configuration section (section 0) of the flash memory.

After you write a configuration file to the flash memory using the commands in the **Flash** tab in the kit application, you can click the **Configure** button to reconfigure the APEX device from the newly written flash memory. Figure 8 on page 24 shows the **Flash** programming tab.

Figure 8. Flash Programming Tab

| Altera APEX PCI Development Kit Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| File Edit Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Demo Debug Flash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Status: Done Writing to Flash<br>File: C:\megacore\apex_pci_kit-v2.0.0\referenc Select File                                                                                                                                                                                                                                                                                                                                                                                                                   | Section 1 |
| Display Window<br>Result of Flash Write operation<br>Monday, October 22, 2001 at 16:32:18<br>Address Hex Data ASCII Data                                                                                                                                                                                                                                                                                                                                                                                      |           |
| □x0000000         fff0209         fb62ffff          b           0x0000008         fffffff         ffffff          b           0x0000018         fffffff         fffffff          b           0x0000018         fffffff         fffffff          b           0x0000018         fffffff         fffffff          b           0x0000028         fffffff         fffffff          b           0x0000028         fffffff         fffffff          b           0x0000030         fffffff         fffffff          b | Write     |
| 0x0000038       fffffff       fffffff         0x0000040       fffffff       fffffff         0x0000048       fffffff       fffffff         0x0000048       ffffffff       ffffffff         0x0000048       fffffffff       ffffffff         0x0000048       fffffffff       ffffffff                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |

The **Display Window** reports data transferred during on-board flash memory operations.

You can set board jumpers to indicate which flash section to use to configure the APEX device on power up.

#### Selecting the Flash Section to Configure the APEX Device

After writing APEX device configuration files to the flash memory, you can use dip-switch S1 to select which flash memory section is used to configure the APEX device.

- ...



-----

---

...

Refer to the *APEX PCI Development Board Data Sheet* for the location of dipswitch S1.

Tables 3 and 4 define the dip-switch settings used to access different sections of the flash memory for the development board that has the EP20K400E device or EP20K1000E device, respectively.

| Table 3. APEX EP2UK4UUE Configuration File Dip-Switch Settings |                     |                     |                     |                     |                     |          |
|----------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------|
| Section Factory Defined or                                     | Dip-Switch Settings |                     |                     |                     | Section Size        |          |
|                                                                | User Defined        | def_flash<br>pgm[3] | def_flash<br>pgm[2] | def_flash<br>pgm[1] | def_flash<br>pgm[0] | (KBytes) |
| 0                                                              | Factory             | On                  | On                  | On                  | On                  | 512      |
| 1                                                              | User                | On                  | On                  | Off                 | On                  | 512      |
| 2                                                              | User                | On                  | Off                 | On                  | On                  | 512      |
| 3                                                              | User                | On                  | Off                 | Off                 | On                  | 512      |
| 4                                                              | User                | Off                 | On                  | On                  | On                  | 512      |
| 5                                                              | User                | Off                 | On                  | Off                 | On                  | 512      |
| 6                                                              | User                | Off                 | Off                 | On                  | On                  | 512      |
| 7                                                              | User                | Off                 | Off                 | Off                 | On                  | 512      |

| Table 4. APEX EP20K1000E Configuration File Dip-Switch Settings |                    |                     |                     |                     |                     |          |
|-----------------------------------------------------------------|--------------------|---------------------|---------------------|---------------------|---------------------|----------|
| Section Factory Define                                          | Factory Defined or |                     | Section Size        |                     |                     |          |
|                                                                 | User Defined       | def_flash<br>pgm[3] | def_flash<br>pgm[2] | def_flash<br>pgm[1] | def_flash<br>pgm[0] | (KBytes) |
| 0                                                               | Factory            | On                  | On                  | On                  | On                  | 1,152    |
| 1                                                               | User               | On                  | Off                 | On                  | On                  | 1,152    |
| 2                                                               | User               | Off                 | On                  | On                  | Off                 | 1,152    |



For more information, see the APEX PCI Development Board Data Sheet.

Flash Programming Walkthrough

This section explains how to use the kit application to write a Raw Binary File (**.rbf**) into the flash. Figure 9 shows the flow for executing flash transactions with the kit application.



#### Figure 9. Example Flash Programming Flow

To configure the APEX device from flash memory, you must use an **.rbf**. Perform the following steps to write an **.rbf** to section 1 of the flash memory and configure the APEX device from this section using the kit application.

Refer to Quartus II Help for instructions on generating an **.rbf** of your project.

- 1. Run the kit application.
- 2. Click the **Flash** tab. Refer back to Figure 8 on page 24, which shows the **Flash** tab interface.
- 3. Click **Select File** to select the **.rbf** to program into the flash. This walkthrough uses the **.rbf** for the APEX PCI reference design as an example.
- Browse to the <installation path>\apex\_pci\_kitv2.0.0\reference\_design\quartus\_20K400E directory for the EP20K400E board or the <installation path>\apex\_pci\_kitv2.0.0\reference\_design\quartus\_20K1000E directory for the EP20K10000C board.
- 5. Select the file apex\_brd\_example.rbf.
- 6. Click Open.

- 7. Choose **1** from the **Section** drop-down list box. The **.rbf** will be written into this flash memory section.
- 8. Click **Write**. The write progress is displayed next to **Status**. The **Display Window** shows the data written into the flash memory.
- 9. The APEX device can be configured from section 1 of the flash memory in one of the following two ways:
  - Click **Configure**. You must perform a soft reboot of your PC for the configuration to take effect.
  - Some systems do not re-enumerate the PCI bus during a soft reboot. If you have such system, you cannot use this reboot method. If, after you perform a soft reboot, the APEX PCI board is not recognized when you launch the kit application, the PCI bus was not re-enumerated.
  - Modify the APEX PCI board dip-switch settings (S1) to make section 1 the default configuration at power up. See "Selecting the Flash Section to Configure the APEX Device" on page 24 for details.

#### **JTAG Configuration**

All components on the APEX PCI development board that support JTAG boundary-scan testing (BST) are connected in a JTAG chain. You can use the JTAG chain to either program/configure the programmable logic devices on the board or for BST of the connections between board components. You can generate programming files to program/configure Altera devices in a JTAG chain using the Quartus II software.

Refer to Quartus II Help for more information on JTAG chain setup.

The following board components are included in the JTAG chain:

- APEX 20K device
- MAX EPM3256A device
- Two EPC4 devices
- PMC headers

The APEX PCI development board has special jumpers to configure the JTAG chain, depending on the devices installed on the board. The jumper options allow you to bypass—or include—some of the JTAG components in the chain.



Refer to the *APEX PCI Development Board Data Sheet* for the location of the jumpers and information on the JTAG chain circuit.

Table 5 shows the jumper settings that you must use to configure the APEX device via the JTAG interface.

| Table 5. Jumper Settings for JTAG Options |       |                                                                                 |  |  |
|-------------------------------------------|-------|---------------------------------------------------------------------------------|--|--|
| Connect Pin<br>Numbers                    | State | Function                                                                        |  |  |
| 1-2                                       | Off   | The EPM3256A device is installed on the board and is included in the chain. (1) |  |  |
| 3-4                                       | On    | The EPC4 device #1 is not installed; therefore, it is bypassed.                 |  |  |
| 5-6                                       | On    | The EPC4 device #0 is not installed; therefore, it is bypassed.                 |  |  |
| 7-8                                       | On    | The PMC is not installed; therefore, it is bypassed.                            |  |  |

Note:

(1) The EPM3256A device cannot be bypassed if the device is installed on the board.

## Prototyping Overview

This section describes the procedure you must follow to prototype your own design using the kit.

You must have a valid license to compile and generate programming files for designs that include Altera PCI MegaCore functions. The kit does not include licenses for any of the PCI MegaCore functions. You can purchase a license from the Altera web site at http://www.altera.com/IPmegastore or from your local Altera sales representative

Prototyping your design involves the following steps:

- 1. Install PCI Compiler
- 2. Simulate Your Application Design
- 3. Synthesize Your Application Design
- 4. Compile in the Quartus II Software & Generate Programming Files
- 5. Write the .rbf of Your Design into Flash
- 6. Hardware Test Your Application Design

#### **Install PCI Compiler**

If you have not already done so, install the PCI compiler version 2.1.0 from the *PCI Development Kit CD-ROM*.



For more information on the PCI Compiler, refer to:

- PCI Compiler Data Sheet
- PCI MegaCore Function User Guide

#### Simulate Your Application Design

Use the PCI behavioral models that are provided with the PCI Compiler version 2.1.0 to simulate the PCI transactions of your application design in a third-party simulation tool. Extensive simulation of your application design minimizes the hardware debugging effort.



For more information on simulating in third-party tools, refer to:

- AN 169: Simulating the PCI Behavioral Models
- Simulating Visual IP Models with the ModelSim Simulator for PCs White Paper
- Simulating Visual IP Models with the NC-Verilog, Verilog-XL, VCS, or ModelSim (UNIX) Simulators White Paper

#### Synthesize Your Application Design

You can synthesize your design in a third-party synthesis tool; the Altera PCI MegaCore function is treated as a black box. Refer to the following tips as you are building your design:

- If you plan to use the flash memory for configuration, Altera recommends that you include the flash programming circuit from the PCI reference design in your application design. This circuit lets you easily update the flash memory without reverting back to default configuration settings. Additionally, you should not alter the contents of section 0 of the flash memory so that you can use the default configuration if needed. The flash program works together with the APEX PCI Development Kit application; therefore, you must make the appropriate changes in your application to account for flash programming.
- Consider using the on-board LEDs to indicate the health of the design. For example, define one LED to indicate that the device was configured, another LED for the SDRAM initialization, etc.

Before generating an EDIF Input File (.edf) or Verilog Quartus Mapping File (.vqm) in a third-party synthesis tool, you must turn off the Insert I/O Pads option. Refer to the help for your third-party synthesis tool for more information about this option.

## Compile in the Quartus II Software & Generate Programming Files

Compile the **.vqm** or **.edf** generated from the third-party synthesis tool in the Quartus II software to generate an SRAM Object File (**.sof**) and **.rbf** for your project.

•••

Refer to Quartus II Help for more information on generating a **.sof** and **.rbf**.

To meet PCI timing, Altera provides constraint files for pci\_mt64 and pci\_mt32 MegaCore functions with the APEX PCI Development Kit. The files are installed into the *<path>***apex\_pci\_kit-v2.0.0const\_files** directory. Refer to the *PCI MegaCore Function User Guide* for instructions on how to annotate the PCI constraint files into your project.



The constraint files provided with the APEX PCI Development Kit are made for the PCI compiler version 2.1.0 using the Quartus II software version 1.1 service pack 2 or higher and can only be used with these versions of the products. If you use a different version of the PCI compiler or Quartus II software, you may receive timing violations on the PCI signals.

Additionally, the pin locations in the constraint files provided with the kit are specific to the APEX PCI development board; therefore, you should use the constraint file provided with the APEX PCI Development Kit for your own board design.

#### Write the .rbf of Your Design into Flash

You can use the reference design and the APEX PCI Development Kit application to write an **.rbf** into any available section of the flash memory.



For more information on writing your design into the flash memory and configuring the APEX device, refer to "Serial Configuration Using Flash Memory" on page 23.

#### Hardware Test Your Application Design

You can use the open source APEX PCI Development Kit application as a starting point to develop your own program. You can also modify the kit application to perform hardware testing of your application design.

## Prototyping Walkthrough

This section uses the reference design included with the APEX PCI Development Kit to illustrate the steps needed to prototype your own design. The following software should be installed on your PC:

- APEX PCI Development Kit version 2.0.0
- PCI Compiler version 2.1.0
- Quartus Îl software version 1.1 service pack 2 or higher
- LeonardoSpectrum-Altera version 2001.1d or higher (optional)

You can use a different synthesis tool; however, this walkthrough uses LeonardoSpectrum-Altera.

Additionally, Altera recommends that you have a license for the pci\_mt64 MegaCore function. If you do not have a license, you cannot generate programming files; however, you can follow the walkthrough to compile the project in the Quartus II software and perform timing analysis.

The walkthrough involves the following procedures:

- Before You Begin
- Synthesize the Reference Design
- Compile the Reference Design in the Quartus II Software
- Write the .rbf into Flash Memory
- Hardware Test the Reference Design

#### **Before You Begin**

Before you begin the walkthrough, perform the following steps:

- Create a working directory for the walkthrough. You will use the directory to compile the reference design project in the Quartus II software version 1.1 service pack 2. These instructions use c:\pci\_prototype\_example.
- Copy all of the files from the path>\apex\_pci\_kitv2.0.0\reference\_design\quartus\_<device> directory (where
  <device> is the APEX device installed on your board) to your
  working directory so that you do not change the original source files
  while you perform the walkthrough.

Table 6 describes the Quartus II files used in the walkthrough. The files are located in the *<path*>\apex\_pci\_kit-

**v2.0.0\reference\_design\quartus\_**<*device>* directory (where <*device>* is the APEX device installed on your board).

| Table 6. Quartus II Files Used in Walkthrough |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| File                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| my_pci.vhd                                    | <ul> <li>This wrapper file implements the pci_mt64 core. The file was generated with the PCI compiler wizard and the following settings:</li> <li>VHDL output file</li> <li>64-bit master/target MegaCore function (pci_mt64)</li> <li>BAR0 is memory mapped with a 1-MByte address range</li> <li>BAR1 is memory mapped with a 16-MByte address range</li> <li>Subsystem ID is set to A402 for the EP20K400E device and AA02 for the EP20K1000E device</li> <li>All other parameters are at the default values</li> </ul> |  |  |  |
|                                               | Refer to the <b>PCI MegaCore Function User Guide</b> for instructions on how to use the wizard.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| my_cntr.vhd                                   | These LPM functions—used by the reference design—were generated using                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ben_fifo_128x8.vhd                            | the Quartus II software. Refer to Quartus II Help for more information on                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| dma_fifo_256x32.vhd                           | generating LPM functions. The files are treated as black boxes during                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| p2s_fifo_128x32.vhd                           | synthesis. Refer to the reference design source code for more information on                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| s2p_fifo_128x64.vhd                           | these files.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| apex_pll.vhd                                  | This file is used to source the clock to the SDRAM modules. It is treated as a black box during synthesis.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| apex_brd.csf                                  | Constraint files for the board. These files are generated using the PCI wizard.                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| apex_brd.esf                                  | Generic constraint Tcl scripts are located in the <path>\apex_pci_kit-</path>                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                               | v2.0.0\const_files directory. Refer to the PCI MegaCore Function User                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                               | <b>Guide</b> for information on how to annotate the PCI constraint files into your project.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| apex_brd_example.sof                          | The programming files for the board.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| apex_brd_example.rbf                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |

Table 7 describes the synthesis files used in the walkthrough. The files are located in the directory *<path>\apptapex\_pci\_kit-v2.0.\reference\_design\synthesis*.

| Table 7. Synthesis Files/Directories Used in Walkthrough          |                                                                                                                                                          |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| File/Directory                                                    | Description                                                                                                                                              |  |  |  |
| apex_brd.vhd                                                      | This top-level project file instantiates <b>my_pci.vhd</b> and all of the reference design modules.                                                      |  |  |  |
| backend<br>flash_cntrl (flash controller)                         | These sub-directories contain the reference design source files. For more information on these modules, refer to <i>FS10: pci_mt64 MegaCore function</i> |  |  |  |
| <pre>sdr_inf (SDRAM interface) sdr_cntrl (SDRAM controller)</pre> | Reference Design and the APEX PCI Development Kit Configuration Controller Circuit White Paper.                                                          |  |  |  |

To execute the walkthrough, perform the steps in the following sections.

#### Synthesize the Reference Design

To synthesize the design, perform the following steps.

- 1. Run the LeonardoSpectrum-Altera software.
- 2. Choose FlowTabs (Tools menu).
- 3. Choose the device on your board in the **Technology** tab:
  - Device family: APEX 20KE
  - Device: EP20K400EFC672 or EP20K1000EFC672
- 4. Click the **Input** tab.
- Enter the walkthrough working directory,
   c:\pci\_prototype\_example, in the Working Directory box.
- 6. Click Open files.
- Select all of the files in the <path>\apex\_pci\_kitv2.0.0\reference\_design\synthesis\backend directory.
- 8. Click Open.
- Perform steps 6 through 8 for the flash\_cntrl, sdr\_inf, and sdr\_cntrl directories, which are located in the cpath>\apex\_pci\_kit-v2.0.\reference\_design\synthesis directory.

- Select the top-level file <*path*>\apex\_pci\_kitv2.0.0\reference\_design\synthesis\apex\_brd.vhd and click Open.
- 11. Click the **Optimize** tab.
- 12. Turn off the Add I/O pads option.
- 13. Click the **Output** tab.
- 14. Make sure that c:\pci\_prototype\_example\apex\_brd.edf file is listed in the Filename box.
- 15. Leave all other options at the defaults.
- 16. Click **Run Flow** to generate the **apex\_brd.edf** file.

#### **Compile the Reference Design in the Quartus II Software**

After synthesis, use the following procedure to generate programming files by compiling the design in the Quartus II software.

- 1. Run the Quartus II software.
- 2. Choose Open (File menu).
- 3. Browse to the c:\pci\_prototype\_example directory.
- 4. Select apex\_brd.edf.
- 5. Click Open.
- 6. Create a Quartus II project.
  - a. Choose New Project Wizard (File menu).
  - b. Click **Next** in the introduction if you have not previously turned it off.
  - c. Type c:\pci\_prototype\_example as the working directory.
  - d. Type apex\_brd as the project.
  - e. Click Next.
  - Click No if you receive a message asking if you want to select a different top-level design entity name.

- g. Click User Library Pathnames.
- h. Type cpath>\PCI\_Compiler-v2.1.0\lib in the Library
  name box.
- i. Click Add.
- j. Click OK.
- k. Click Next.
- 1. Click Finish to create the Quartus II project apex\_brd.
- 7. Set the EDA tool settings to LeonardoSpectrum.
  - a. Choose EDA Tool Settings (Project menu).
  - b. Choose **Leonardo Spectrum** in the **Design entry/synthesis tool** settings drop-down list box.
  - c. Click OK.
- 8. Choose Start Compilation (Processing menu) or use the keystrokes Ctrl+L to compile the project and generate the apex\_brd.sof and apex\_brd.rbf files. If you do not have a valid license for the pci\_mt64 MegaCore function, you will not be able to generate programming files. In this case, use the file apex\_brd\_example.rbf from the walkthrough working directory to complete the steps in this walkthrough.

#### Write the .rbf into the Flash Memory

To write the **.rbf** into section 1 of the flash memory, perform the steps in "Write the .rbf of Your Design into Flash" on page 30.

When plugged into a PCI slot, the board configures from the factory-defined flash section. You can note the subsystem ID of the reference design in the kit application's **Debug** tab.

#### Hardware Test the Reference Design

The following steps describe how to perform hardware testing.

- 1. Shut down your PC.
- 2. Remove the APEX PCI development board from your PC.

- 3. Change the board's dip-switch settings to configure from section 1 of the flash memory.
- 4. Reinstall the APEX PCI development board in your PC.
- 5. Reboot the PC.
- 6. Run the kit application.
- 7. Click the **Debug** tab and verify that the subsystem ID has the same value as that specified in the **my\_pci.vhd** wrapper file.

You have completed all of the steps necessary to prototype the design with the APEX PCI development board. Perform additional testing and verification as needed for your design.